Analysis of Percentage of infant deaths due to Nohit Sharma (2020086) Vash Agravel (2020551)

Mohit Sharma (2020086) Yash Agrawal (2020551) Aishwary Sharma (2020490) Ujjwal Rastogi (2020456) Mohit Bansal (2020526)

A child dies of pneumonia every 39 seconds

Introduction

Pneumonia is the largest infectious cause of death in children. Globally, there is 1 case in every 71 children of Pneumonia every year. According to 2019 Stats, 14% of the total children deaths under 5 years were due to

Introduction

- Pneumonia.

Deaths due to Pneumonia are high in poor regions.

Introduction

Pneumonia kills more children than any other infectious disease.

Deaths of children under five by infectious disease, 2000 vs 2017

1,756,000

significantly connected to various poverty-

Motivation

- Mortality due to childhood pneumonia is
- related variables like malnutrition, lack of
- safe drinking water, indoor and outdoor
 - air pollution, and insufficient access to
 - health care.

Other factors like poor health, lack of sanitation, the population of the district, and suffering from various diseases like measles, high fever, low birth weight, asphyxia, diarrhea, etc may also lead to pneumonia.

Motivation

Data Used

 29 States and 736 Districts Time Interval 2011 - 2019 (Time Interval 9 years) Data of Rabi and Kharif Seasons • Approximate 70,000 Data entry of more than 70 variables

1. We first found the possible variables that were likely to affect the cases of pneumonia.

> Model 1: $v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)}$

2. Then, we added some more likely variables and included each of them in our regression model and got their coefficients value and P-value

3. We ruled out some of the variables based on their P and coefficients value.

Final Model: $v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)} + \beta_6 v46_{(i,t)} + \beta_7 v47_{(i,t)}$

We incorporate various factors that affects the Percentage of infant deaths due to Pneumonia We calculated the goodness of fit value for both seasons to confirm our regression analysis further.

> $R^2 = 0.6254$ (Rabi) **R²= 0.6285** (kharif)

Variables and their Descriptions

For 35 states and union Territories over 9 Years (2011-19)

Dependent Variable

	Variable Name (In the Data)	Description
v43 Percentage of infant deaths due to Pneumonia (to total	v43	Percentage of infant deaths due to Pneumonia (to total re

Variable Name (In the Data)	
tap	District Wise Tap Wat
v41	Percentage of infant de
v42	Percentage of infant deaths due
v44	Percentage of infant de
v45	Percentage of infant d
v46	Percentage of infant de
v47	Percentage of infant deat

ported infant deaths)

Independent Variable

Description

er Access (Percentage of Households) as of 2019

aths due to Asphyxia (to total reported infant deaths)

e to Low Birth Weight (LBW) (to total reported infant deaths)

aths due to Diarrhea (to total reported infant deaths)

eaths due to Fever (to total reported infant deaths)

aths due to Measles (to total reported infant deaths)

hs due to other causes (to total reported infant deaths)

Our Models

$$v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)}$$

This model tests the relationship between the Independent variable and the Dependent variable described in the previous slide for the season Kharif.

Model-2

Model-1

 $v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)} + \beta_6 v46_{(i,t)} + \beta_7 v47_{(i,t)}$

This model tests the relationship between Independent variable and Dependent variable described in the previous slide for the season Rabi.

$+ \beta_5 v 45_{(i,t)} + \beta_6 v 46_{(i,t)} + \beta_7 v 47_{(i,t)}$

Data Summary

Data Summary Kharif Season

Data Summary Rabi Season

Acronym	Mean	Mode	Median	SD	Acronym	Mean	Mode	Median	SD
tap	20.4785	0	8.81	24.86024	tap	19.83234	0	7.58	24.69985
V ₄₁	10.7907	0	8.1	11.70585	V ₄₁	10.79767	0	8.2	11.6416
V ₄₂	18.1456	0	16.9	13.9367	V ₄₂	18.15516	0	17	14.01485
V ₄₄	1.76239	0	0	6.863468	V ₄₄	1.71813	0	0	6.746211
V ₄₅	3.9079	0	1	9.733367	V ₄₅	3.980289	0	1	9.81926
V ₄₆	0.2707	0	0	3.192825	V ₄₆	0.2024821	0	0	3.095583
V ₄₇	746.6088	100	52.35	21.71159	V ₄₇	731.2406	100	52.5	21.83915

Regression Summary of Kharif

Model 1:

 $v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)} + \beta_6 v46_{(i,t)} + \beta_7 v47_{(i,t)}$

Model 1	Estimate	Standard Error	T values	P values		
Intercept	63.407378	0.338712	187.201	<2e-16		
tap	-0.004436	0.002130	-2.083	0.0373		
v41	-0.760246	0.005958	-127.594	<2e-16		
v42	-0.644428	0.004987	-129.223	<2e-16		
v44	-0.578744	0.008733	-66.273	<2e-16		
v45	-0.580552	0.006598	-87.987	<2e-16		
v46	-0.627616	0.016391	-38.290	<2e-16		
v47	-0.625939	0.003930	-159.281	<2e-16		
K = 8 N = 17376 R ² = 0.6285						

Regression Summary of Rabi

Model 2: $v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)} + \beta_6 v46_{(i,t)} + \beta_7 v47_{(i,t)}$

Model 1	Estimate	Standard Error	T values	P values	
Intercept	63.396676	0.360804	175.709	<2e-16	
tap	-0.004109	0.002219	-1.852	0.064	
∨41	-0.761700	0.006309	-120.724	<2e-16	
v42	-0.643672	0.005214	-123.447	<2e-16	
∨44	-0.587252	0.009183	-63.951	<2e-16	
v45	-0.581304	0.006870	-84.621	<2e-16	
v46	-0.629736	0.017523	-35.938	<2e-16	
v47	-0.625553	0.004153	-150.617	<2e-16	
K = 8 N = 15545 R ² = 0.6254					

Plot of Health Indicator Vs Yield Index

Kharif . .

V43

Yield Index

Plot of $\widehat{u_{l,t}}$ Vs Yield Index

Kharif

Plot of True Value Vs Expected Value

Histogram of $\widehat{u_{l,t}} * x_{i,t}$

 $\sum_{i,t} \widehat{u_{i,t}} x_{i,t}$

Dependent Variable	Kharif	Rabi
tap	6.009941e-07	1.830124e-07
v41	2.973328e-07	7.741792e-08
v42	5.026667e-07	1.829574e-07
v44	5.386443e-08	1.936649e-08
v45	1.147732e-07	3.320037e-08
v46	6.045357e-09	2.544224e-09
v47	1.46376e-06	4.494355e-07

The values of the summation ($\sum_{i,t} \widehat{u_{i,t}} x_{i,t}$) are all approximately equal to

Θ.

Monte Carlo Simulations:

Performed Monte Carlo Simulation on v43 as dependent variable and yield index as a dependent variable after deleting 20% of the data set for the original data

Regression Model : $v43(i,t) = \beta 0 + \beta 1 index(i,t)$

On complete Data Set			On updated Data Set			
	β	β ₁			β	β ₁
	C 044054	0.042607		Mean	6.877526	-0.0134124
Mean	6.914854	-0.013597		Standard	1.083854e-12	1.208235e-15
Standard	0.053777	0.003268		Deviation		
Error				Standard Error	1.083854e-13	1.208235e-16

Conclusion : The value of β 0's is within the error of 0.5398% The value of β 1's is within the error of 1.37633%

Яг

20

2

 \odot

Frequency

Histograms of B1

Result from Monte Carlo Simulations

- From the table, we can deduce that the mean values of b0 and b1 are similar with some marginal errors.
- (The error could have been improved by running the simulation for some more iterations. but to to limited machine power we were unable to reduce the error any further)
- From the density functions, it can be derived that the peak value i.e., most of the b0 and b1 values are near the values of the b's we get from the original dataset
- From the histograms, We can see that the frequency is max at the values of the b's we got from the original dataset

Hypothesis Test

$\mathbf{i} \quad \mathbf{v}43_{(i,t)} = \beta_0 + \beta_1 \tan_{(i,t)} + \beta_2 \mathbf{v}41_{(i,t)} + \beta_3 \mathbf{v}42_{(i,t)} + \beta_4 \mathbf{v}44_{(i,t)} + \beta_5 \mathbf{v}45_{(i,t)} + \beta_6 \mathbf{v}46_{(i,t)} + \beta_7 \mathbf{v}47_{(i,t)} + \beta_8 \text{south}_{(i,t)}$ Here, south is a dummy variable which is 1 if the state is in the South Zone else 0 Kharif Rabi

Call:	Call:
lm(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v4	Im(formula = v
south, data = kharif_dummy)	south, dat
Residuals:	Residuals:
Min 10 Median 30 Max	Min 1
-63.392 -1.901 0.188 2.384 36.688	-63.393 -1.78
Coefficients:	Coefficients:
Estimate Std. Error t value Pr(> t)	(Intercept) 63
(Intercept) 63.392776 0.338215 187.434 < 2e-16 ***	tap 0
tap -0.001115 0.002175 -0.513 0.608	v41 -0
v41 -0.751243 0.006077 -123.617 < 2e-16 ***	v42 -0
v42 -0.645243 0.004981 -129.546 < 2e-16 ***	v42 -0
v44 -0.580344 0.008723 -66.534 < 2e-16 ***	v44 -0
v45 -0.582210 0.006592 -88.317 < 2e-16 ***	v45 -0
v46 -0.628065 0.016367 -38.374 < 2e-16 ***	v46 -0
v47 -0.624543 0.003929 -158.972 < 2e-16 ***	v47 -0
south -0.984678 0.135553 -7.264 3.91e-13 ***	south -1

T-test - Null Hypothesis Rejected for Kharif T-test - Null Hypothesis Rejected for Rabi

43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + $a = Rabi_dummy$

Median 30 0 Max 0.209 2.348 36.611 Q

Estimate Std. Error t value Pr(>|t|).3882664 0.3599855 176.086 <2e-16 *** .0005755 0.0022814 0.8010.252 <2e-16 *** .7512140 0.0064155 -117.094 <2e-16 *** .6443824 0.0052030 -123.849 <2e-16 *** .5893674 0.0091654 -64.303 <2e-16 *** .5834856 0.0068587 -85.072 <2e-16 *** .6304374 0.0174830 -36.060 0.0041469 -150.524 <2e-16 *** .6242068 .1953093 0.1410030 -8.477 <2e-16 ***

ii) $v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)} + \beta_6 v46_{(i,t)} + \beta_7 v47_{(i,t)} + \beta_8 north_{(i,t)}$ Here, north is a dummy variable which is 1 if the state is in the North Zone else 0

		• ^
K	han	71
0 b	343	

Call: lm(formula = v43 ~ tap north, data = khan	p + v41 + v42 + v44 rif_dummy)	+ v45 + v46 +	v47 + Call: Im(formula north	a = \ , da1
Residuals: Min 1Q Media -63.635 -1.813 0.19	an 3Q Max 91 2.380 36.975		Residuals Min -63.731	: -1.71
Coefficients:			Coefficier	nts:
Estimate	Std. Error t valu	e Pr(> t)		E
(Intercept) 63.371106	0.339228 186.81	0 <2e-16 ***	(Intercept	t) 63
tap -0.004809	0.002139 -2.24	9 0.0246 *	tap	-(
v41 -0.759667	0.005966 -127.33	9 <2e-16 ***	v41	-(
v42 -0.643308	0.005021 -128.11	1 <2e-16 ***	∨42	- (
v44 -0.579147	0.008735 -66.30	4 <2e-16 ***	v44	-(
v45 -0.581798	0.006630 -87.74	8 <2e-16 ***	v45	-(
v46 -0.629307	0.016414 -38.33	9 <2e-16 ***	∨46	-(
v47 -0.626379	0.003936 -159.12	7 <2e-16 ***	∨47	-(
north 0.270416	0.142740 1.89	4 0.0582 .	north	(

T-test - failed to reject null Hypothesis for Kharif **T-test - Null Hypothesis Rejected for Rabi**

Rabi

v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 ta = Rabi_dummy)

10 Median 3Q Max 2.331 37.003 13 0.203

Estimate Std. Error t value Pr(>|t|) 3.335275 0.361421 175.240 < 2e-16 *** 0.004700 0.002228 -2.1090.03494 * 0.760837 0.006316 -120.463 < 2e-16 *** 0.641894 0.005253 -122.193 < 2e-16 含含含 0.587938 0.009184 -64.015 < 2e-16 官官官 0.583202 0.006903 -84.488 < 2e-16 营宜营 0.632086 0.017540 -36.037 < 2e-16 索克克 0.004158 -150.597 < 2e-16 *** 0.626124 0.402155 0.146511 2.745 0.00606 **

 $V43_{(i,t)} = V43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 V41_{(i,t)} + \beta_3 V42_{(i,t)} + \beta_4 V44_{(i,t)} + \beta_5 V45_{(i,t)} + \beta_6 V46_{(i,t)} + \beta_7 V47_{(i,t)} + \beta_8 east_{(i,t)}$ Here, east is a dummy variable which is 1 if the state is in the East Zone else 0

Kharif

Call: Im(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + east, data = kharif_dummy) Residuals: Min 1Q Median 3Q Max -63.429 -1.802 0.190 2.365 37.176 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 63.438609 0.338700 187.301 < 2e-16 *** tap -0.005039 0.002236 -3.103 0.001922 ** v41 -0.758499 0.005275 -126.939 < 2e-16 *** v42 -0.642687 0.005008 -128.336 < 2e-16 *** v44 -0.577316 0.008738 -66.067 < 2e-16 *** v44 -0.577316 0.008738 -66.067 < 2e-16 *** v45 -0.580194 0.006597 -87.954 < 2e-16 *** v46 -0.626514 0.016388 -38.230 < 2e-16 *** v47 -0.625091 0.003935 -158.845 < 2e-16 *** v47 -0.625091 0.003935 -158.845 < 2e-16 *** east -0.591628 0.161802 -3.656 0.000256 *** Call: Im(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + east -0.252251 0.145079 -1.739 0.0821.		
Residuals: Min 10 Median 30 Max -63.429 -1.802 0.190 2.365 37.176 Residuals: Min 10 Median 30 Max -63.429 -1.802 0.190 2.365 37.176 Coefficients: Min 10 Median 30 Max Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Estimate Std. Error t value Pr(> t) Coefficients: Value Value Coefficients: Value Value Coefficients: Value Value Coefficients: Value Coefficients: Value	Call: lm(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + east, data = kharif_dummy)	Call: lm(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + east, data = Rabi_dummy)
Coefficients: Coefficients: Estimate Std. Error t value Pr(> t) Estimate Std. Error t value Pr(> t) (Intercept) 63.438609 0.338700 187.301 < 2e-16 ***	Residuals: Min 1Q Median 3Q Max -63.429 -1.802 0.190 2.365 37.176	Residuals: Min 1Q Median 3Q Max -63.411 -1.712 0.190 2.316 36.987
Estimate Std. Error t value Pr(> t)(Intercept) 63.4386090.338700187.301 < 2e-16 ***	Coefficients:	Coefficients:
(Intercept)63.4386090.338700187.301< 2e-16***(Intercept)63.4191970.361013175.670<2e-16***tap-0.0069390.002236-3.1030.001922**tap-0.0056370.002386-2.3620.0182*v41-0.7584990.005975-126.939< 2e-16	Estimate Std. Error t value Pr(> t)	Estimate Std. Error t value Pr(> t)
tap-0.0069390.002236-3.1030.001922**tap-0.0056370.002386-2.3620.0182*v41-0.7584990.005975-126.939< 2e-16	(Intercept) 63.438609 0.338700 187.301 < 2e-16 ***	(Intercept) 63.419197 0.361013 175.670 <2e-16 ***
v41-0.7584990.005975-126.939< 2e-16***v41-0.7608880.006326-120.274<2e-16***v42-0.6426870.005008-128.336< 2e-16	tap -0.006939 0.002236 -3.103 0.001922 **	tap -0.005637 0.002386 -2.362 0.0182 *
v42-0.6426870.005008-128.336< 2e-16***v42-0.6426750.005245-122.527<2e-16***v44-0.5773160.008738-66.067< 2e-16	v41 -0.758499 0.005975 -126.939 < 2e-16 ***	v41 -0.760888 0.006326 -120.274 <2e-16 ***
v44 -0.577316 0.008738 -66.067 < 2e-16 ***	v42 -0.642687 0.005008 -128.336 < 2e-16 ***	v42 -0.642675 0.005245 -122.527 <2e-16 ***
v45 -0.580194 0.006597 -87.954 < 2e-16 *** v45 -0.581146 0.006870 -84.596 <2e-16 *** v46 -0.626514 0.016388 -38.230 < 2e-16	v44 -0.577316 0.008738 -66.067 < 2e-16 ***	v44 -0.586639 0.009189 -63.841 <2e-16 ***
v46 -0.626514 0.016388 -38.230 < 2e-16 *** v47 -0.625091 0.003935 -158.845 < 2e-16	v45 -0.580194 0.006597 -87.954 < 2e-16 ***	v45 -0.581146 0.006870 -84.596 <2e-16 ***
v47 -0.625091 0.003935 -158.845 < 2e-16 *** v47 -0.624990 0.004166 -150.036 <2e-16 *** east -0.591628 0.161802 -3.656 0.000256 *** east -0.252251 0.145079 -1.739 0.0821 .	v46 -0.626514 0.016388 -38.230 < 2e-16 ***	v46 -0.629320 0.017523 -35.914 <2e-16 ***
east -0.591628 0.161802 -3.656 0.000256 *** east -0.252251 0.145079 -1.739 0.0821.	v47 -0.625091 0.003935 -158.845 < 2e-16 ***	v47 -0.624990 0.004166 -150.036 <2e-16 ***
	east -0.591628 0.161802 -3.656 0.000256 ***	east -0.252251 0.145079 -1.739 0.0821.

T-test - Null Hypothesis Rejected for Kharif T-test - failed to reject null Hypothesis for Rabi

- v47 +

$\mathbf{v}_{(i,t)} = \beta_0 + \beta_1 \tan_{(i,t)} + \beta_2 v 41_{(i,t)} + \beta_3 v 42_{(i,t)} + \beta_4 v 44_{(i,t)} + \beta_5 v 45_{(i,t)} + \beta_6 v 46_{(i,t)} + \beta_7 v 47_{(i,t)} + \beta_8 west_{(i,t)}$ Here, west is a dummy variable which is 1 if the state is in the West Zone else zero

Kharif

Call:	Call:
lm(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 +	$lm(formula = v43 \sim tap + v41 + v42 + v44 + v45 + v46 + v46 + v45 + v46 + v46$
west, data = kharif_dummy)	west, data = Rab1_dummy)
Residuals:	Residuals:
Min 10 Median 30 Max	Min 1Q Median 3Q Max
-63.423 -1.852 0.182 2.360 36.614	-63.401 -1.751 0.221 2.304 36.631
Coefficients:	Coefficients:
Estimate Std. Error t value Pr(> t)	Estimate Std. Error t value Pr(> t)
(Intercept) 63.385109 0.337759 187.664 <2e-16 ***	(Intercept) 63.368523 0.360131 175.960 < 2e-16 ***
tap 0.001652 0.002209 0.748 0.455	tap 0.001407 0.002325 0.605 0.545
v41 -0.761069 0.005942 -128.084 <2e-16 ***	v41 -0.762450 0.006298 -121.060 < 2e-16 ***
v42 -0.636048 0.005043 -126.126 <2e-16 ***	v42 -0.637556 0.005263 -121.138 < 2e-16 ***
v44 -0.578700 0.008708 -66.456 <2e-16 ***	v44 -0.587244 0.009165 -64.072 < 2e-16 ***
v45 -0.583048 0.006584 -88.553 <2e-16 ***	v45 -0.583022 0.006860 -84.990 < 2e-16 ***
$\sqrt{46}$ -0.628257 0.016345 -38.438 $<2e-16$ ***	v46 -0.630047 0.017489 -36.025 < 2e-16 ***
$\sqrt{47}$ = 0.625370 0.003919 = 159 572 $\sqrt{26}$ = 16 ***	v47 -0.625261 0.004145 -150.829 < 2e-16 ***
west -1.410486 0.141069 -9.999 <2e-16 ***	west -1.229806 0.157869 -7.790 7.12e-15 ***

T-test - Null Hypothesis Rejected for Kharif T-test - Null Hypothesis Rejected for Rabi

- v47 +

 $\mathbf{v} = \beta_0 + \beta_1 \tan_{(i,t)} + \beta_2 v 41_{(i,t)} + \beta_3 v 42_{(i,t)} + \beta_4 v 44_{(i,t)} + \beta_5 v 45_{(i,t)} + \beta_6 v 46_{(i,t)} + \beta_7 v 47_{(i,t)} + \beta_8 \text{central}_{(i,t)}$ Here, central is a dummy variable which is 1 if the state is in the Central Zone else 0

Kharif

Call:	Call:
lm(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 +	lm(formula = v43 ~ tap + v41 + v42 + v44 + v45 + v46 +
central, data = kharif_dummy)	central, data = Rabi_dummy)
Residuals:	Residuals:
Min 1Q Median 3Q Max	Min 1Q Median 3Q Max
-63.304 -1.833 0.161 2.353 36.891	-63.300 -1.762 0.196 2.292 36.900
Coefficients:	Coefficients:
Estimate Std. Error t value Pr(> t)	Estimate Std. Error t value Pr(> t)
(Intercept) 63.305970 0.339948 186.223 < 2e-16 ***	(Intercept) 63.302272 0.362259 174.743 < 2e-16 ***
tap -0.002741 0.002188 -1.253 0.21038	tap -0.002807 0.002265 -1.239 0.21529
v41 -0.757456 0.006014 -125.951 < 2e-16 ***	v41 -0.759192 0.006370 -119.185 < 2e-16 ***
v42-0.6468750.005038-128.396< 2e-16***v44-0.5772710.008741-66.041< 2e-16	v42 -0.645526 0.005254 -122.866 < 2e-16

T-test - Null Hypothesis Rejected for kharif T-test - Null Hypothesis Rejected for Rabi

Rabi

v47 +

$v43_{(i,t)} = \beta_0 + \beta_1 tap_{(i,t)} + \beta_2 v41_{(i,t)} + \beta_3 v42_{(i,t)} + \beta_4 v44_{(i,t)} + \beta_5 v45_{(i,t)} + \beta_6 v46_{(i,t)} + \beta_7 v47_{(i,t)} + \beta_8 northeast_{(i,t)}$ Here, northwest is a dummy variable which is 1 if the state is in the North East Zone else 0

Kharif

Call:	Call:
$lm(formula = \sqrt{43} \approx tap + \sqrt{41} + \sqrt{42} + \sqrt{44} + \sqrt{45} + \sqrt{46} + \sqrt{47} + \sqrt{47}$	$lm(formula = \sqrt{43} \sim tap + \sqrt{41} + \sqrt{42} + \sqrt{44} + \sqrt{45} + \sqrt{46} +$
$\operatorname{neth} \operatorname{East} \operatorname{data} \operatorname{basif} \operatorname{dumm} \mathcal{O}$	nonthEast data (hanif dumm)
northEast, data = khariT_dummy)	northeast, uata = kharii_uummy)
Residuals:	Residuals:
Min 10 Median 30 Max	Min 10 Median 30 Max
-61 616 -1 878 0 124 2 232 38 400	-61 616 -1 878 0 124 2 232 38 400
-01.010 -1.070 0.124 2.232 30.499	-01.010 -1.070 0.124 2.252 50.499
Coefficients:	Coefficients:
Estimate Std. Error t value Pr(> t)	Estimate Std. Error t value Pr(> t)
(Intercept) 61.498697 0.343354 179.112 <2e-16 ***	(Intercept) 61.498697 0.343354 179.112 <2e-16 ***
tap 0.005061 0.002136 2.369 0.0178 *	tap 0.005061 0.002136 2.369 0.0178 *
v41 -0.749543 0.005885 -127.373 <2e-16 ***	v41 -0.749543 0.005885 -127.373 <2e-16 ***
v42 -0.620147 0.005019 -123.561 <2e-16 ***	v42 -0.620147 0.005019 -123.561 <2e-16 ***
v44 -0.582203 0.008600 -67.698 <2e-16 ***	v44 -0.582203 0.008600 -67.698 <2e-16 ***
v45 -0.589894 0.006509 -90.626 <2e-16 ***	v45 -0.589894 0.006509 -90.626 <2e-16 ***
V46 -0.613785 0.016150 -38.004 <2e-16 ***	v/6 =0.613785 0.016150 =38.004 <20=16 ***
V4/ -0.015034 0.005903 -13/.149 <2e-10 ***	V4/ -0.613654 0.003905 -15/.149 <2e-16 ***
northEast 3.59//62 0.153848 23.385 <2e-16 ***	northEast 3.597762 0.153848 23.385 <2e-16 ***

T-test - Null Hypothesis Rejected for kharif T-test - Null Hypothesis Rejected for Rabi

v47 +

Kharif:

Model 1: v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + south Model 2: v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + north + east + west + northEast + central Res.Df RSS Df Sum of Sq F Pr(>F) 1 17367 800190 2 17363 767823 4 32367 182.98 < 2.2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
Analysis of Variance Table
Model 1: v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + south
Model 2: v43 ~ tap + v41 + v42 + v44 + v45 + v46 + v47 + north + east +
   west + northEast + central
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 15536 686045
2 15532 658131 4 27914 164.69 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

: Rabi

Creative Component

Change in the Beta coefficient 0.65 Accumulative wise -0.70 beta coef of v41 Change in the Beta coefficient -0.75 -0.68 -0.69 -0.80 -0.70 beta coef of v41 -0.71 2011 2012 2013 2014 2015 2016 -0.72 Year -0.73 year wise -0.74

Year

2016

2018

2014

2012

Impact of Asphyxia on Pneumonia

In the two plots, we can see trends in the value of the beta's over the years This could be due to many uncounted reasons.

Impact of having Newborn weight less than 2.5kg on Pneumonia

Accumulative wise

A similar change can be noticed in the beta's of the Newborn weight less than 2.5kg on Pneumonia

To find if there were any changes in the coefficients of the dependent Variables in Various Zones. Steps Taken -

- Run Regression analysis on all six zones differently
- Get the coefficient and their standard error
- Then plot the confidence interval of these coefficients for all seven independent variables

In these plots, we can notice that the coefficient of the independent variables for the northeast zone is different from the other zones. The reasons can be wet climate/ reachability or some unaccounted reasons.

1. Mohit Sharma(2020086) 2. Aishwary Sharma(2020490) **3.Yash Agrawal (2020551)** 4. Ujjwal Rastogi (2020546) 5. Mohit Bansal (2020526)

